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Codestral Mamba is
now the best code-LLM
with fewer than 10B
parameters, surpassing
the transformer-based
LLMs of similar size.

Released on July 16, 2024
COd eSt ra l M am ba https://mistral.ai/news/codestral-

ba/
Mistral Al collaborates with Mamba team to release e
this 7B non-transformer LLM trained for coding tasks.
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CODESTRAL MAMBA

Codestral Mamba is tested on in-context

retrieval capabilities up to 256k tokens !!!

Image source: Medium blog, Emmanuel Mark Ndaliro
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Count-based vs Prediction-based

* Fasttraining &
* Efficient usage of statistics

* Primarily used to capture word
similarity

* Disproportionate importance
given to large counts
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Count-based vs Prediction-based

Prediction-based

* Fasttraining (4 * Scaleswith corpus size s
* Efficient usage of statistics * |nefficient usage of statistics

* Primarily used to capture word * Generate improved performance on
Similarity other tasks

* Disproportionate importance e Can capture complex patterns
given to large counts E(’ beyond word similarity (&
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GloVe — Global Vectors

Crucial insight: Ratios of co-occurrence probabilities can encode word meaning

_ x = solid X =gas X = water x = random

P(x|ice) large small large small
P(x | steam) small large large small

P(x |ice)

large small ~1 ~1

P(x |steam)

Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe: Global Vectors for Word Representation”, 2014
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GloVe — Global Vectors

Crucial insight: Ratios of co-occurrence probabilities can encode word meaning

_ x = solid X =gas X = water x = random

P(x|ice) 1.9x104 6.6 x 10 3.0x103 1.7 x 10
P(x | steam) 2.2 x10° 7.8x10* 2.2 x103 1.8x10°

P(x |ice)
8.9 8.5x 1072 1.36 0.96

P(x |steam)

Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe: Global Vectors for Word Representation”, 2014

LLMs: Introduction and Recent Advances &' Tanmoy Chakraborty



https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Co-occurrence Matrix

* Let us denote the co-occurrence matrix as X. Compute P(j | i) from X, for two
words i and j in the corpus.
0 2 1 0 0 0 0
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Learn Word Vectors Based on These Counts

* For the two words, i and j, assume their corresponding representation vectors are w; and
w;, respectively.

* W; WJ log P(j|i)

Similarity How likely is j to

between occur in the context

wordsiand j ofi

X;:
T — ly

W w; = log7 = log X;; —logX; . (1)

.. T
Similarly, w; w; = log = log X;; —logX; .- (2)
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Learn Word Vectors Based on These Counts

c w/ w; = log = log X;; —logX; . (1)
Slmllarly,w w; = log = log X;; —logX; .. (2)

* Adding (1) and (2):
2 WlTWj = 2logX;; —logX; —logX;

T 1 1
= w; w; = log X;j; —ElogXi —Elong
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Learn Word Vectors Based on These Counts

T 1 1
w; w; = logX;; —ElogXi —Elong
* log X; and log X; depends only on/and respectively — can be thought of as word-specific

biases
* These are made learnable (considered as biases)

= W;r W] + bi + b] = lOgXU
* W, W, b, b, are the learnable parameters

* Loss function: min . b, b, Zi,j(WiTWj + b; + bj — log X;; )*
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Learn Word Vectors Based on These Counts

- T 2
Loss function: min . p.b; 2 j(w; w; + by + b — log X;; )
* Problem: Gives equal weightage to every co-occurrence
* |deally, rare and very frequent co-occurrences should have lesser weightage

 Modification: Add a weighting function f (x).

2
* Modified loss function: min,, \ 5, Zi’jf(Xij)(wiij + b; + bj — log X;; )

What can f possibly be?

LLMs: Introduction and Recent Advances


https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Weighting function

N (X/Xmax)® 1F X < Xpay
f (3'» ) — I o can be chosen empirically

otherwise for a given dataset.

Properties of f:

I. f(0) = 0. If f is viewed as a continuous
function, it should vanish as x — 0 fast

enough that the lm, _.q f(x) ]a:.rg2 x 1s finite.

2. f(x) should be non-decreasing so that rare
co-occurrences are not overwelghted.

3. f(x) should be relatively small for large val-
ues of x. so that fn:qmant Co-OoCccurrences are

not overweighted.
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GloVe: Advantages

* Fast training
* Scalable to huge corpora

* Good performance even with small corpus and small vectors
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Details About GloVe

Original paper: https://nlp.stanford.edu/pubs/glove.pdf

Blogs with easy explanations:

* https://medium.com/sciforce/word-vectors-in-natural-language-processing-global-vectors-glove-
51339db89639

* https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/?fbclid=IwAR3-
pws3-K-Snfk6aqbixdxS8zFf-uuPDJ_0ipb94kWeygrd CSEQEQHWmMNSs

* https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-
b13b4f19c010
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We will see how we can use these separately
trained word embeddings (or train/update
embeddings on-the-fly) as we perform language
modeling using Neural Nets!
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